III-Nitride Based Avalanche Photo Detectors

نویسندگان

  • Ryan MClintock
  • Erdem Cicek
  • Zahra Vashaei
  • Can Bayram
  • Manijeh Razeghi
  • P. Ulmer
چکیده

Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized—GaN APDs operating in Geiger mode can achieve gains exceeding 1×10. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multip...

متن کامل

Advanced receiver technology for commercial threat warning systems

Advanced threat warning technology will begin to play a more significant role for homeland defense and national security. Of particular concern are landing and take-off patterns of slow moving commercial airliners here and abroad. Recognizing this vulnerability has triggered renewed interest in high sensitivity internal gain optical detectors and two dimensional arrays. Avalanche photo-detector...

متن کامل

A Comprehensive Performance Analysis of Direct Detection Receivers inWDMASystems

In this work the performance of a wavelength division multiple access (WDMA) system with direct detection receiver is investigated. For this purpose, the probability of error in a WDMA network with OOK modulation considering crosstalk, ISI, photo detector noise and thermal noise is calculated and the effect of each on system performance is investigated. The system performance in presence of PIN...

متن کامل

Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates

There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultipl...

متن کامل

III-Nitride photon counting avalanche photodiodes

In order for solar and visible blind III-nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avala...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010